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Hyperideal theory in ordered Krasner
hyperrings

Saber Omidi and Bijan Davvaz

Abstract

In this paper, we study some properties of ordered Krasner hyper-
rings. Also we state some definitions and basic facts and prove some
results on ordered Krasner hyperring (R,+, ·,≤). In particular, we in-
troduce the concepts of prime hyperideals and semiprime hyperideals of
an ordered Krasner hyperring and present several examples of them.

1 Introduction and basic definitions

In [13], Heidari and Davvaz studied a semihypergroup (H, ◦) besides a binary
relation ≤, where ≤ is a partial order relation such that satisfies the monotone
condition. Indeed, an ordered semihypergroup (H, ◦,≤) is a semihypergroup
(H, ◦) together with a partial order ≤ that is compatible with the hyperoper-
ation, meaning that for any x, y, z in H,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.

Here, z ◦x ≤ z ◦y means for any a ∈ z ◦x there exists b ∈ z ◦y such that a ≤ b.
The case x ◦ z ≤ y ◦ z is defined similarly. The concept of ordered semihyper-
groups is a generalization of the concept of ordered semigroups. The concept
of ordering hyperstructures introduced by Chvalina [7] as a special class of hy-
pergroups and studied by many authors, for example, Bakhshi and Borzooei
[5], Chvalina [7], Chvalina and Moucka [8], Davvaz et al. [6, 11], Ameri et
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al. [1, 2], Hoskova [14, 15]. There are different types of hyperrings. If only
the addition + is a hyperoperation and the multiplication · is an operation,
then we say that R is an additive hyperring. A special case of this type is the
hyperring introduced by Krasner [17]. Some principal notions of hyperring
theory can be found in [9, 12, 18, 19, 22, 23].

A Krasner hyperring [17] is an algebraic hypersructure (R,+, ·) which sat-
isfies the following axioms:

(1) (R,+) is a canonical hypergroup [20], i.e., (i) for any x, y, z ∈ R, x+(y+
z) = (x + y) + z, (ii) for any x, y ∈ R, x + y = y + x, (iii) there exists
0 ∈ R such that 0 + x = x+ 0 = x, for any x ∈ R, (iv) for every x ∈ R,
there exists a unique element x′ ∈ R, such that 0 ∈ x+x′ (we shall write
−x for x′ and we call it the opposite of x), (v) z ∈ x + y implies that
y ∈ −x+ z and x ∈ z − y, that is (R,+) is reversible;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e.,
x · 0 = 0 · x = 0;

(3) The multiplication is distributive with respect to the hyperoperation +.

We call 0 the zero of the Krasner hyperring (R,+, ·). For x ∈ R, let −x denote
the unique inverse of x in (R,+). Then −(−x) = x, for all x ∈ R. In addition,
we have (x+y) ·(z+w) ⊆ x ·z+x ·w+y ·z+y ·w, (−x) ·y = x ·(−y) = −(x ·y),
for all x, y, z, w ∈ R. A Krasner hyperring R is called commutative (with unit
element) if (R, ·) is a commutative semigroup (with unit element). A Krasner
hyperfield is a Krasner hyperring for which (R−{0}, ·) is a group. A non-empty
subset I of a Krasner hyperring (R,+, ·) is called a left (resp. right) hyperideal
of R if (I,+) is a canonical subhypergroup of (R,+) and for every a ∈ I and
r ∈ R, r · a ∈ I (resp. a · r ∈ I). A hyperideal of (R,+, ·) is one which is a
left as well as a right hyperideal of R. That is, x+ y ⊆ I and −x ∈ I, for all
x, y ∈ I and x · y, y · x ∈ I, for all x ∈ I and y ∈ R. Let I be a hyperideal of
R and R/I = {x+ I | x ∈ R}. Define (x+ I) + (y+ I) = {(z+ I) | z ∈ x+ y}
and (x+ I) · (y + I) = x · y + I, for all x, y ∈ I. Then (R/I,+, ·) is a Krasner
hyperring.

Now, we recall the following definition from [3]. A partially ordered ring is
a ring (R,+, ·), together with a compatible partial order, i.e., a partial order
≤ on the underlying set R that is compatible with the ring operations in the
sense that it satisfies: (1) for all a, b, c ∈ R, a ≤ b implies that a + c ≤ b + c;
(2) for all a, b ∈ R, 0 ≤ a and 0 ≤ b we have 0 ≤ a · b. An ordered ring,
also called a totally ordered ring, is a partially ordered ring (R,≤) where ≤ is
additionally a total order. An element a ∈ R such that 0 ≤ a is called positive.
If P is the set of positive elements of a partially ordered ring, then P +P ⊆ P
and P · P ⊆ P . Furthermore, P ∩ (−P ) = {0}. If R is an ordered ring, then
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the set {x : x ∈ R, x ≥ 0} is called the positive cone. The positive cone of an
ordered ring completely defines the order x ≤ y if and only if y − x ∈ P . An
ordered field is an ordered ring which is also a field. It is easy to see that if
a, b, c ∈ R with a ≤ b and 0 ≤ c, then a · c ≤ b · c. Note that every ring is an
ordered ring with the trivial order.

2 Hyperideals in ordered Krasner hyperrings

An algebraic hypersructure (R,+, ·,≤) is called an ordered Krasner hyperring
if (R,+, ·) is a Krasner hyperring with a partial order relation ≤ such that for
all a, b and c in R:

(1) If a ≤ b, then a+ c ≤ b+ c, meaning that for any x ∈ a+ c, there exists
y ∈ b+ c such that x ≤ y. The case c+ a ≤ c+ b is defined similarly.

(2) If a ≤ b and 0 ≤ c, then a · c ≤ b · c and c · a ≤ c · b.

An element a ∈ R is called positive if 0 ≤ a. The set of all positive elements of
R is called the positive cone of R and is denoted by P = R+. x ∈ R is called
negative if x ≤ 0. The set of all negative elements of R is called the negative
cone of R and is denoted by R−.

Proposition 2.1. In any ordered Krasner hyperring (R,+, ·,≤), for each
a, b ∈ R, we have

a ≤ b⇔ −b ≤ −a.

Proof. For each a, b ∈ R, we have

a ≤ b ⇔ (−a+ b) ∩R+ 6= ∅
⇔ (b− a) ∩R+ 6= ∅
⇔ (a− b) ∩R− 6= ∅
⇔ (−b+ a) ∩R− 6= ∅
⇔ −b ≤ −a.

Example 1. Let R = {a, b, c} be a set with the hyperoperation ⊕ and the
binary operation � defined as follows:

⊕ a b c
a a b c
b b b R
c c R c

� a b c
a a a a
b a b c
c a c b
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Then, (R,⊕,�) is a Krasner hyperring. We have (R,⊕,�,≤) is an ordered
Krasner hyperring where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (a, b), (a, c)}.

The covering relation and the figure of R are given by:

≺= {(a, b), (a, c)}.

b
a

bc
�
�
�@

@
@

bb

Example 2. If (H,≤,+) is a totally ordered group, then

x⊕ x = {t ∈ H : t ≤ x} for all x ∈ H,
x⊕ y = {max{x, y}} for all x, y ∈ H,x 6= y,

defines a structure of canonical hypergroup on H. If (H,+, ·) is a totally or-
dered ring (for example R), then (H,⊕, ·) is a Krasner hyperring [21]. Consider
(H,⊕, ·) as a poset with the natural ordering. Then, (H,⊕, ·) is an ordered
Krasner hyperring.

Example 3. Let (R,+, ·) be a Krasner hyperring and M(R) = {(a, b) : a, b ∈
R}. The hyperoperation ⊕ and the multiplication � are defined on M(R) by:

(a, b)⊕ (c, d) = {(x, y) : x ∈ a+ c, y ∈ b+ d},
(a, b)� (c, d) = (ac, bd),

for all (a, b), (c, d) ∈ M(R). Clearly, this hyperoperation is well defined and
(M(R),⊕) is a canonical hypergroup. The element (0, 0) is the additive iden-
tity of M(R). Also, for each (a, b) of M(R) there exists a unique element
(−a,−b) ∈M(R) such that (0, 0) ∈ (a, b)⊕ (−a,−b). Also, the multiplication
� is well defined and associative. Therefore, (M(R),�) is a semigroup. Now,
let (a, b), (c, d), (e, f) ∈M(R). Then,

(a, b)�
(

(c, d)⊕ (e, f)
)

= (a, b)� {(r, s) : r ∈ c+ e, s ∈ d+ f}
= {(ar, bs) : r ∈ c+ e, s ∈ d+ f}

Also,(
(a, b)� (c, d)

)
⊕
(

(a, b)� (e, f)
)

= (ac, bd)⊕ (ae, bf)

= {(g, h) : g ∈ ac+ ae, h ∈ bd+ bf}.
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By the left distributive axiom of R,

(a, b)�
(

(c, d)⊕ (e, f)
)

=
(

(a, b)� (c, d)
)
⊕
(

(a, b)� (e, f)
)
.

Similarly, we can show that the right distributive law is also satisfied on M(R).
Thus, (M(R),⊕,�) is a Krasner hyperring. Now, let (R,+, ·,≤) be an ordered
Krasner hyperring. Define the order relation � on M(R) by:(

a, b
)
�
(
a′, b′

)
⇔ a ≤ a′, b ≤ b′

Then, (M(R),⊕,�,�) is an ordered Krasner hyperring.

A homomorphism from an ordered Krasner hyperring (R1,+1, ·1,≤1) into
an ordered Krasner hyperring (R2,+2, ·2,≤2) is a function ϕ : R1 → R2

such that (1) ϕ(a +1 b) ⊆ ϕ(a) +2 ϕ(b); (2) ϕ(a ·1 b) = ϕ(a) ·2 ϕ(b); (3) If
a ≤1 b, then ϕ(a) ≤2 ϕ(b). Also ϕ is called a good (strong) homomorphism
if in the previous condition (1), the equality is valid. An isomorphism from
(R1,+1, ·1,≤1) into (R2,+2, ·2,≤2) is a bijective good homomorphism from
(R1,+1, ·1,≤1) onto (R2,+2, ·2,≤2). The kernel of ϕ, kerϕ, is defined by
kerϕ = {x ∈ R1 | ϕ(x) = 02}, where 02 is the zero of (R2,+2, ·2). If R1 is
isomorphic to R2, then it is denoted by R1

∼= R2.
Let (R,+, ·,≤) be an ordered Krasner hyperring. A subset I of R is called

a hyperideal of R if it satisfies the following conditions: (1) (I,+) is a canonical
subhypergroup of (R,+); (2) x · y ∈ I and y · x ∈ I for all x ∈ I and y ∈ R;
(3) When x ∈ I and y ∈ R such that y ≤ x, imply that y ∈ I.

Let ϕ be a homomorphism from an ordered Krasner hyperring R1 into an
ordered Krasner hyperring R2. Then, kerϕ is a hyperideal of R1 and Imϕ is
a subhyperring of R2. In [10], Davvaz gave the fundamental homomorphism
theorem of Krasner hyperrings. Now, we drive this theorem in the context of
hyperrings.

Theorem 2.2. Let ϕ be a homomorphism from an ordered Krasner hyperring
R into an ordered Krasner hyperring T . Define θ : R/kerϕ → T by θ(x +
kerϕ) = ϕ(x), for all x ∈ R. Then, the following statements hold.

(1) θ is a homomorphism from R/kerϕ onto T .

(2) If ϕ is a good (strong) homomorphism, then θ is an isomorphism and
hence R/kerϕ ∼= T .

Proof. (1) We check the conditions of definition. Let x, y ∈ R be such that
x + kerϕ = y + kerϕ. Then, x ∈ y + kerϕ, so x ∈ y + z for some z ∈ kerϕ.
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Thus, ϕ(x) ∈ ϕ(y + z) ⊆ ϕ(y) + ϕ(z) = ϕ(y) + 0 = {ϕ(y)}. So, ϕ(x) = ϕ(y).
Thus, the map θ is well-defined. If x, y ∈ R, then we have

θ((x+ kerϕ) + (y + kerϕ)) = θ({z + kerϕ : z ∈ x+ y})
= {θ(z + kerϕ) : z ∈ x+ y} = {ϕ(z) : z ∈ x+ y}

Also,
θ(x+ kerϕ) + θ(y + kerϕ) = ϕ(x) + ϕ(y)
⊇ ϕ(x+ y) = {ϕ(z) : z ∈ x+ y}

Thus, θ((x + kerϕ) + (y + kerϕ)) ⊆ θ(x + kerϕ) + θ(y + kerϕ). So, the first
condition of definition is verified. We have

θ(x+ kerϕ)(y + kerϕ) = θ(xy + kerϕ) = ϕ(xy)
= ϕ(x)ϕ(y) = θ(x+ kerϕ) + θ(y + kerϕ).

So, the second condition of definition is verified. Now, let x ≤R y. Since ϕ is a
homomorphism, we have ϕ(x) ≤T ϕ(y). Thus θ(x+kerϕ) ≤T θ(y+kerϕ). So,
the third condition of definition is verified. Therefore, θ is a homomorphism.

(2) Assume that ϕ is a good (strong) homomorphism. It can be seen from
the proof of (1), that θ is a good (strong) homomorphism. We know that
0 + kerϕ ∈ kerθ. Let x ∈ R be such that θ(x+ kerϕ) = 0. Then ϕ(x) = 0, so
x ∈ kerϕ. Hence x+kerϕ = 0+kerϕ. Thus we have kerθ = {0+kerϕ}. Hence
θ is one to one. Clearly, θ is onto. Thus θ is a good (strong) isomorphism.
That is R/kerϕ is strongly isomorphic to T .

Theorem 2.3. Let (R,+, ·,≤) be an ordered Krasner hyperring with positive
cone P and ϕ : R → R be any good (strong) homomorphism of the canonical
hypergroup (R,+) such that ϕ(P ) ⊆ P . Assume that for any r ∈ R, there
exists an integer n ≥ 1 such that ϕn(r) = r. Then, ϕ is the identity map.

Proof. If a < b, then b− a ⊆ P . So, by hypothesis ϕ(b− a) ⊆ P . Since ϕ is a
good (strong) homomorphism of (R,+), it follows that ϕ(b−a) = ϕ(b)−ϕ(a).
Therefore, ϕ(a) < ϕ(b). Now, let ϕ 6= id. Then ϕ(r) 6= r for some r ∈ R. We
have either r < ϕ(r) or ϕ(r) < r. Say r < ϕ(r). Fix an integer n ≥ 1 such
that ϕn(r) = r. Then, we have

r < ϕ(r) < ϕ2(r) < · · · < ϕn(r) = r

a contradiction. If ϕ(r) < r, a similar contradiction results. Therefore, ϕ is
the identity map.

In the following, we shall specialize our study to some of the basic facts
concerning ordered Krasner hyperrings.
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Definition 2.4. A non-empty subset P of an ordered Krasner hyperring
(R,+, ·,≤) is called a prime hyperideal of R if the following conditions hold:

(1) A · B ⊆ P implies that A ⊆ P or B ⊆ P for any two hyperideal A and
B of R.

(2) If x ∈ P and y ≤ x, then y ∈ P for every y ∈ R.

Example 4. Define the hyperoperation ⊕ and the operation � on the set
R = {0, 1} by

⊕ 0 1
0 0 1
1 1 {0, 1}

� 0 1
0 0 0
1 0 1

Then, (R,⊕,�) is a commutative Krasner hyperring with the zero element 0.
Consider (R,⊕,�) as a poset with the natural ordering. Thus, (R,⊕,�) is
an ordered Krasner hyperring. Now, it is easy to see that {0} and {0, 1} are
hyperideals of R. It is obvious that {0} is a prime hyperideal of R.

Example 5. Consider the hyperring R = {0, a, b} with the hyperaddition ⊕
and the multiplication � defined as follows:

⊕ 0 a b
0 0 a b
a a {a, b} R
b b R {a, b}

� 0 a b
0 0 0 0
a 0 b a
b 0 a b

Then, (R,⊕,�) is a Krasner hyperring [4]. We have (R,⊕,�,≤) is an ordered
Krasner hyperring, where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (0, a), (0, b)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (0, b)}.

b
0

bb
�
�
�@

@
@

ba

Now, it is easy to see that {0} and {0, a, b} are hyperideals of R. It is obvious
that {0} is a prime hyperideal of R.
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Example 6. Let R = {0, a, b, c} be a set with the hyperoperation ⊕ and the
multiplication � defined as follows:

⊕ 0 a b c
0 0 a b c
a a {0, b} {a, c} b
b b {a, c} {0, b} a
c c b a 0

� 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b b 0
c 0 c 0 c

Then, (R,⊕,�) is a Krasner hyperring [4]. We have (R,⊕,�,≤) is an ordered
Krasner hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, b), (c, a)}.

The covering relation and the figure of R are given by:

≺= {(0, b), (c, a)}.

b
c

b
0

babb

Now, it is easy to see that I1 = {0}, I2 = {0, b}, I3 = {0, c}, I4 = {0, b, c} and
I5 = {0, a, b, c} are hyperideals of R. Also I2, I3 and I4 are prime hyperideals
of R. The hyperideal I1 = {0} is not a prime hyperideal of R. Indeed,
{0, b} � {0, c} = {0}, but {0, b} * {0} and {0, c} * {0}.

Example 7. Let R = {a, b, c, d, e, f} be a set with the hyperoperation ⊕ and
the multiplication � defined as follows:

⊕ a b c d e f
a a b c d e f
b b {a, b} d {c, d} f {e, f}
c c d c d {a, c, e} {b, d, f}
d d {c, d} d {c, d} {b, d, f} R
e e f {a, c, e} {b, d, f} e f
f f {e, f} {b, d, f} R f {e, f}
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and
� a b c d e f
a a a a a a a
b a b a b a b
c a a c c e e
d a b c d e f
e a a e e c c
f a b e f c d

Then, (R,⊕,�) is a Krasner hyperring. We have (R,⊕,�,≤) is an ordered
Krasner hyperring, where the order relation ≤ is defined by:

≤ := {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (a, c),
(a, d), (a, e), (a, f), (b, d), (b, f), (c, d), (e, f)}.

The covering relation and the figure of R are given by:

≺= {(a, b), (a, c), (a, e), (b, d), (b, f), (c, d), (e, f)}.

b
a

b e
�
�
�@

@
@

bc bb
db fb
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It is easy to see that {a}, {a, b}, {a, c, e} and {a, b, c, d, e, f} are hyperideals
of R. It is obvious that {a, b} and {a, c, e} are prime hyperideals of R. The
hyperideal {a} is not a prime hyperideal of R. Indeed, {a, b}�{a, c, e} = {a},
but {a, b} * {a} and {a, c, e} * {a}.

Definition 2.5. A non-empty subset I of an ordered Krasner hyperring
(R,+, ·,≤) is called a semiprime hyperideal of R if the following conditions
hold:

(1) A ·A ⊆ I implies that A ⊆ I for any hyperideal A of R.

(2) If x ∈ I and y ≤ x, then y ∈ I for every y ∈ R.

Remark 1. Every prime hyperideal of R is a semiprime hyperideal of R.
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Example 8. In Example 6, I1 = {0} is a semiprime hyperideal, but is not a
prime hyperideal.

Definition 2.6. An ordered Krasner hyperring (R,+, ·,≤) is said to be a
prime hyperring if a · R · b = 0 for a, b ∈ R implies either a = 0 or b = 0.
Equivalently, an ordered Krasner hyperring R is called prime if a · r · b = 0 for
all r ∈ R implies either a = 0 or b = 0.

Example 9. In Example 4 and Example 5, R is prime, but in Example 6 and
Example 7, R is not prime.

Definition 2.7. An ordered Krasner hyperring (R,+, ·,≤) is said to be a
semiprime hyperring if a · R · a = 0 for a ∈ R implies a = 0. Equivalently, an
ordered Krasner hyperring R is called semiprime if a · r · a = 0 for all r ∈ R
implies a = 0.

Remark 2. Every prime ordered Krasner hyperring is a semiprime ordered
Krasner hyperring.

Example 10. In Example 6, R is a semiprime ordered Krasner hyperring, but
is not a prime ordered Krasner hyperring.

Definition 2.8. Let (R,+, ·,≤) be an ordered Krasner hyperring with the
positive cone P . A subset A ⊆ R is convex if 0 ≤ p ≤ q, q ∈ A implies that
p ∈ A. Equivalently, A is convex if p1 + p2 ⊆ A, pi ∈ P , implies that pi ∈ A,
i = 1, 2. A hyperideal A of an ordered Krasner hyperring (R,+, ·,≤) is said
to be convex if it is convex as a subset.

Example 11. (1) In Example 4, the hyperideals {0} and {0, 1} are convex.

(2) In Example 5, the hyperideals {0} and {0, a, b} are convex.

(3) In Example 6, the hyperideals I1, I2, I3, I4 and I5 are convex.

(4) In Example 7, the hyperideals {a}, {a, b}, {a, c, e} and {a, b, c, d, e, f}
are convex.

Theorem 2.9. Let (R,+, ·,≤) be an ordered Krasner hyperring. A hyperideal
I ⊆ R is the kernel of a homomorphism in an ordered Krasner hyperring if
and only if I is a convex hyperideal of R.

Proof. Let ϕ : R→ R be a homomorphism and I = kerϕ. Let 0 ≤ p ≤ q in R
with ϕ(q) = 0. Since ϕ is a homomorphism, it follows that 0 ≤ ϕ(p) ≤ ϕ(q) =
0 in R. Thus we have ϕ(p) = 0. Therefore, I = kerϕ is a convex hyperideal
of R.

Conversely, suppose that I is a convex hyperideal of R. Consider the
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projection map π : R → R/I. We can impose an order on R/I so that π is

order preserving if, whenever
n∑

i=1

pia
2
i ⊆ I, pi ∈ P , ai ∈ R, then pja

2
j ∈ I,

1 ≤ j ≤ n. This is the second characterization of convexity of Definition 2.8.
The weakest order on R/I such that π is order preserving, namely π∗(P ) =
{p+ I : p ∈ P}, will be called the induced order.

Definition 2.10. A convex hyperideal Q ⊂ R is a maximal convex hyperideal
if Q 6= R and whenever Q ⊆ Q′, Q′ a convex hyperideal, either Q′ = Q or
Q′ = R.

Now, we establish the existence of maximal convex hyperideals.

Theorem 2.11. Let (R,+, ·,≤) be an ordered Krasner hyperring. Let I $ R
be a convex hyperideal. Then, I is contained in at least one maximal convex
hyperideal.

Proof. The family of all convex hyperideals containing I but not containing 1
is non-empty, partially ordered by inclusion, and satisfies the chain condition.
Thus by Zorn’s Lemma the proof completes.

Remark 3. Since I = (0) is always a convex hyperideal of R, we conclude
that any non-zero ordered Krasner hyperring (R,+, ·,≤) has maximal convex
hyperideal.

Remark 4. Maximal convex hyperideals are prime.

Definition 2.12. If (R,+, ·,≤) is an ordered Krasner hyperring and A ⊆ R,
then (A] is the subset of R defined as follows:

(A] = {t ∈ R : t ≤ a, for some a ∈ A}.

Lemma 2.13. Let (R,+, ·,≤) be an ordered Krasner hyperring. If A and B
are non-empty subsets of R, then we have:

(1) A ⊆ (A];

(2) If A ⊆ B, then (A] ⊆ (B];

(3) ((A]] = (A];

(4) (A ∪B] = (A] ∪ (B];

(5) (A] + (B] ⊆ (A+B];

(6) (A] · (B] ⊆ (A ·B];

(7) ((A] · (B]] = (A ·B];
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(8) If A,B,C ⊆ R such that A ⊆ B, then A+C ⊆ B+C and C+A ⊆ C+B;

(9) If A,B,C ⊆ R such that A ⊆ B, then A · C ⊆ B · C and C ·A ⊆ C ·B.

Proof. The proof is straightforward.

Definition 2.14. Let (R,+, ·,≤) be an ordered Krasner hyperring. A non-
empty subset S of R is called an M -system of R if for each a, b ∈ S, there
exist r ∈ R and c ∈ S such that c ≤ a · (r · b) or equivalently c ∈ (a · (R · b)].

Example 12. (1) The set {0, 1} is an M -system of an ordered Krasner hy-
perring defined in Example 4.

(2) The sets {0, a}, {0, b}, {a, b} and {0, a, b} are an M -system of an ordered
Krasner hyperring defined in Example 5.

(3) The sets {0, a}, {0, b}, {0, c}, {a, b} and {a, c} are an M -system of an
ordered Krasner hyperring defined in Example 6, but {b, c} is not an
M -system of an ordered Krasner hyperring defined in Example 6.

(4) The sets {a}, {a, b} and {a, c, e} are an M -system of an ordered Krasner
hyperring defined in Example 7, but {b, c} is not an M -system of an
ordered Krasner hyperring defined in Example 7.

Definition 2.15. Let (R,+, ·,≤) be an ordered Krasner hyperring. A non-
empty subset S of R is called an N -system of R if for each a ∈ S, there exist
r ∈ R and c ∈ S such that c ≤ a · (r · a) or equivalently c ∈ (a · (R · a)].

Remark 5. Every M -system of R is an N -system of R.

Example 13. The set {b, c} is an N -system of an ordered Krasner hyperring
defined in Example 6, but is not an M -system of an ordered Krasner hyperring
defined in Example 6.

Definition 2.16. A non-empty subset I of an ordered Krasner hyperring
(R,+, ·,≤) is called a quasi-prime hyperideal of R if for all left hyperideals A,
B of R, A ·B ⊆ I implies that A ⊆ I or B ⊆ I.

Definition 2.17. A non-empty subset I of an ordered Krasner hyperring
(R,+, ·,≤) is called a quasi-semiprime hyperideal of R if for any left hyperideal
A of R, A ·A ⊆ I implies that A ⊆ I.

Remark 6. Every quasi-prime hyperideal of R is a quasi-semiprime hyperideal
of R.

Example 14. In Example 6, {0} is a quasi-semiprime hyperideal of R, but is
not a quasi-prime hyperideal of R.
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Definition 2.18. A non-empty subset I of an ordered Krasner hyperring
(R,+, ·,≤) is called a quasi-irreducible hyperideal of R if for all left hyperideals
A, B of R, A ∩B ⊆ I implies that A ⊆ I or B ⊆ I.

Example 15. In Example 6, {0, b}, {0, c} and {0, b, c} are quasi-irreducible
hyperideals of R, but {0} is not a quasi-irreducible hyperideal of R.

Lemma 2.19. Let I be a left hyperideal of an ordered Krasner hyperring
(R,+, ·,≤). Then, I is quasi-prime hyperideal if and only if for all a, b ∈ R,
a · (R · b) ⊆ I implies that a ∈ I or b ∈ I.

Proof. It is straightforward.

Theorem 2.20. Let I be a left hyperideal of an ordered Krasner hyperring
(R,+, ·,≤). Then, I is quasi-prime hyperideal if and only if R \ I is an M -
system.

Proof. Let I be a quasi-prime hyperideal and a, b ∈ R \ I. Assume that
c 6∈ (a · (R · b)] for all c ∈ R \ I. Then (a · (R · b)] ⊆ I. This implies that
a · (R · b) ⊆ I. So, a ∈ I or b ∈ I, which contradicts the assumption that
a, b ∈ R \ I. Hence R \ I is an M -system.

Conversely, let R\I be an M -system and a ·(R ·b) ⊆ I for some a, b ∈ R\I.
Then there exist c ∈ R \ I and x ∈ R such that c ≤ a · (x · b), which implies
that c ∈ I, it contradicts the assumption c ∈ R \ I. Hence I is a quasi-prime
hyperideal of R.

Lemma 2.21. Let I be a left hyperideal of an ordered Krasner hyperring
(R,+, ·,≤). Then, I is quasi-semiprime hyperideal if and only if for all a ∈ R,
a · (R · a) ⊆ I implies that a ∈ I.

Proof. It is straightforward.

Theorem 2.22. Let I be a left hyperideal of an ordered Krasner hyperring
(R,+, ·,≤). Then, I is quasi-semiprime hyperideal if and only if R \ I is an
N -system.

Proof. Let I be a quasi-semiprime hyperideal and a ∈ R \ I. Assume that
c 6∈ (a · (R · a)] for all c ∈ R \ I. Then (a · (R · a)] ⊆ I. This implies that
a · (R · a) ⊆ I. So, a ∈ I, which contradicts the assumption that a ∈ R \ I.
Hence R \ I is an N -system.

Conversely, let R \ I be an N -system and a · (R · a) ⊆ I with a 6∈ I. Then
there exist c ∈ R \ I and r ∈ R such that c ≤ a · (r · a), which implies that
c ∈ I, it contradicts the assumption c ∈ R \ I. Hence a ∈ I. Therefore, I is a
quasi-semiprime hyperideal of R.
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Theorem 2.23. If N is an N -system of an ordered Krasner hyperring(R,+, ·,≤
) and a ∈ N , then there exists an M -system M of R such that a ∈M ⊆ N .

Proof. Let N be an N -system of an ordered Krasner hyperring R and a ∈
N . Then, by definition of N -system, there exist some c1 ∈ N such that
c1 ∈ (a · (R · a)], so (a · (R · a)] ∩ N 6= ∅. Take a1 ∈ (a · (R · a)] ∩ N
and again using the definition of N -system, there exist c2 ∈ N such that
c2 ∈ (a1 · (R · a1)], so (a1 · (R · a1)] ∩N 6= ∅. Continuing in this way, we take
ai ∈ (ai−1 · (R · ai−1)] ∩ N 6= ∅. Take a0 = a and define M = {a0, a1, · · · }.
Then, M is an M -system and a ∈M ⊆ N .

Now, we recall the definition of a regular ring. An element a in a ring R
is said to be regular if a ∈ aRa. A ring R is called regular if every element
of R is regular. In the following, we present some results on regular ordered
Krasner hyperrings.

Definition 2.24. Let (R,+, ·,≤) be an ordered Krasner hyperring. An ele-
ment a ∈ R is said to be regular if there exists an element x ∈ R such that
a ≤ (a · x) · a. An ordered Krasner hyperring (R,+, ·,≤) is said to be regular
if every element of R is regular.

Example 16. The ordered Krasner hyperring (R,⊕,�) defined as in Example
4, is regular.

Definition 2.25. Let (R,+, ·,≤) be an ordered Krasner hyperring. An ele-
ment a ∈ R is said to be right regular if a ∈ (a2 ·R].

Theorem 2.26. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then, R is
a regular ordered Krasner hyperring if and only if (A ·B] = (A ∩B] for right
hyperideal A and left hyperideal B of R.

Proof. Let R be regular. It is clear that (A · B] ⊆ (A ∩ B]. If c ∈ (A ∩ B],
then c ≤ z for some z ∈ A ∩ B. Since R is regular, there exists an element
x ∈ R such that c ≤ (c ·x) · c. We have c ≤ (c ·x) · c ⊆ (c ·x) · z ⊆ ((A ·R) ·B].
Thus c ∈ ((A ·R) ·B] ⊆ (A ·B]. Hence, (A∩B] ⊆ (A ·B]. Therefore, we have
(A ·B] = (A ∩B].

Conversely, let a ∈ R. Then we have a ∈ (a ·R]∩(R ·a] = ((a ·R) ·(R ·a)] =
(a ·R ·a]. So, there exists an element x ∈ R such that a ≤ (a ·x) ·a. Therefore,
R is a regular ordered Krasner hyperring.

Theorem 2.27. Every hyperideal of a regular ordered Krasner hyperring R
is a prime hyperideal if and only if it is an irreducible hyperideal of R.

Proof. Suppose that P is prime hyperideal of R and (A∩B] ⊆ P . By Theorem
2.26, (A ·B] = (A∩B], so (A ·B] ⊆ P which implies that (A] ⊆ P or (B] ⊆ P .
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Therefore, P is irreducible hyperideal of R.
Conversely, suppose that P is an irreducible hyperideal of R. Then (A ∩

B] ⊆ P implies that (A] ⊆ P or (B] ⊆ P . By Theorem 2.26, (A ·B] = (A∩B],
and so P is a prime hyperideal of R.

Definition 2.28. An ordered Krasner hyperring (R,+, ·,≤) is called intra-
regular if for every a ∈ R, there exists x, y ∈ R such that a ≤ x · a2 · y, or
equivalently a ∈ (R · a2 ·R].

Example 17. The ordered Krasner hyperring (R,⊕,�) defined as in Example
4, is intra-regular.

The notion of pseudoorder on an ordered semigroup was introduced and
studied by Kehayopulu and Tsingelis [16]. Now, we continue this section with
a similar definition for ordered Krasner hyperrings.

Definition 2.29. Let (R,+, ·,≤) be an ordered Krasner hyperring. A relation
ρ on R is called pseudoorder if the following conditions hold:

(1) ≤⊆ ρ;

(2) aρb and bρc imply aρc;

(3) aρb implies a+ cρb+ c and c+ aρc+ b, for all c ∈ R;

(4) aρb implies a · cρb · c and c · aρc · b, for all c ∈ R.

Definition 2.30. Let (R,+, ·,≤R) and (T,⊕,⊗,≤T ) be two ordered Krasner
hyperrings. Under the coordinatewise multiplication, i.e.,

(r1, t1)� (r2, t2) = (r1 + r2, t1 ⊕ t2),
(r1, t1) ? (r2, t2) = (r1 · r2, t1 ⊗ t2),

where (r1, t1), (r2, t2) ∈ R×T , the Cartesian product R×T of R and T forms
a Krasner hyperring. Define a partial order ≤ on R × T by (r1, t1) ≤ (r2, t2)
if and only if r1 ≤R r2 and t1 ≤T t2, where (r1, t1), (r2, t2) ∈ R × T . Then,
(R× T,�, ?,≤) is an ordered Krasner hyperring.

Definition 2.31. Let (R,+, ·,≤R) and (T,⊕,⊗,≤T ) be two ordered Krasner
hyperrings, ρ1, ρ2 be two pseudoorders on R, T , respectively. On R × T we
define:

(r1, t1)ρ(r2, t2)⇔ r1ρ1r2 and t1ρ2t2.

Lemma 2.32. In Definition 2.31, ρ is pseudoorder on R× T .

Proof. It is straightforward.
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Theorem 2.33. Let (R,+, ·,≤R) and (T,⊕,⊗,≤T ) be two ordered Krasner
hyperrings, ρ1, ρ2 be two pseudoorders on R, T , respectively. Then,

(R× T )/ρ∗ ∼= R/ρ∗1 × T/ρ∗2.

Proof. We consider the map ψ : (R × T )/ρ∗ → R/ρ∗1 × T/ρ∗2 by ψ(ρ∗(r, t)) =
(ρ∗1(r), ρ∗2(t)). Suppose that ρ∗(r1, t1) = ρ∗(r2, t2). Then, (r1, t1)ρ∗(r2, t2)
which implies that (r1, t1)ρ(r2, t2) and (r2, t2)ρ(r1, t1). Hence, r1ρ1r2, t1ρ2t2,
r2ρ1r1 and t2ρ2t1 which imply that r1ρ

∗
1r2 and t1ρ

∗
2t2. So, (ρ∗1(r1), ρ∗2(t1)) =

(ρ∗1(r2), ρ∗2(t2)). This means that ψ(ρ∗(r1, t1)) = ψ(ρ∗(r2, t2)). Therefore, ψ
is well defined. Now, we show that ψ is a homomorphism. Suppose that
ρ∗(r1, t1) and ρ∗(r2, t2) are two arbitrary elements of (R× T )/ρ∗. Then,

ψ(ρ∗(r1, t1) ] ρ∗(r2, t2)) = ψ(ρ∗(r, t)), for all (r, t) ∈ (r1, t1)� (r2, t2)
= (ρ∗1(r), ρ∗2(t)), for all r ∈ r1 + r2, t ∈ t1 ⊕ t2
= (ρ∗1(r1) + ρ∗1(r2), ρ∗2(t1)⊕ ρ∗2(t2))
= (ρ∗1(r1), ρ∗2(t1))� (ρ∗1(r2), ρ∗2(t2))
= ψ(ρ∗(r1, t1))� ψ(ρ∗(r2, t2)).

So, the first condition of the definition of homomorphism is verified. Suppose
that ρ∗(r1, t1) and ρ∗(r2, t2) are two arbitrary elements of (R× T )/ρ∗. Then,

ψ(ρ∗(r1, t1)Oρ∗(r2, t2)) = ψ(ρ∗(r, t)), for (r, t) = (r1, t1) ? (r2, t2)
= (ρ∗1(r), ρ∗2(t)), for r = r1 · r2, t = t1 ⊗ t2
= (ρ∗1(r1)� ρ∗1(r2), ρ∗2(t1) � ρ∗2(t2))
= (ρ∗1(r1), ρ∗2(t1))× (ρ∗1(r2), ρ∗2(t2))
= ψ(ρ∗(r1, t1))× ψ(ρ∗(r2, t2)).

So, the second condition of the definition of homomorphism is verified. Now,
suppose that ρ∗(r1, t1) � ρ∗(r2, t2). Then, (r1, t1)ρ(r2, t2) which implies that
r1ρ1r2 and t1ρ2t2. Thus, ρ∗1(r1) �R ρ∗1(r2) and ρ∗2(t1) �T ρ∗2(t2). Hence,
(ρ∗1(r1), ρ∗2(t1)) �R×T (ρ∗1(r2), ρ∗2(t2)). This means that ψ(ρ∗(r1, t1)) �R×T
ψ(ρ∗(r2, t2)), and so the third condition of the definition of homomorphism
is verified. Therefore, ψ is a homomorphism. Clearly, ψ is onto. So, we
show that it is one to one. Suppose that ψ(ρ∗(r1, t1)) = ψ(ρ∗(r2, t2)). Then,
(ρ∗1(r1), ρ∗2(t1)) = (ρ∗1(r2), ρ∗2(t2)) and so ρ∗1(r1) = ρ∗1(r2) and ρ∗2(t1) = ρ∗2(t2).
Hence, (r1, r2) ∈ ρ∗1 and (t1, t2) ∈ ρ∗2. This implies that r1ρ1r2, r2ρ1r1, t1ρ2t2
and t2ρ2t1. Thus, (r1, t1)ρ(r2, t2) and (r2, t2)ρ(r1, t1). Therefore,
(r1, t1)ρ∗(r2, t2) or ρ∗(r1, t1) = ρ∗(r2, t2). Therefore, ψ is an isomorphism
and so the proof is completed.

Open problem. What is a necessary and sufficient condition for a Krasner
hyperring (R,+, ·) to be orderable?



Hyperideal theory in ordered Krasner hyperrings 209

References

[1] R. Ameri, A. Kordi and S. Hoskova-Mayerova, Multiplicative hyperring of
fractions and coprime hyperideals, An. Stiint. Univ. “Ovidius” Constanta
Ser. Mat., 25(1) (2017), 5-23.

[2] R. Ameri, S. Hoskova-Mayerova and A. Kordi, Pseudo regular rings de-
rived from multiplicative hyperrings, In: Aplimat 16th Conference on Ap-
plied Mathematics 2017 Proceedings. Bratislava: Vydavatelstvo STU Slo-
vak University of Technology in Bratislava, 2017, pp. 17-27.

[3] F. W. Anderson, Lattice-ordered rings of quotients, Canadian Journal of
Mathematics, 17 (1965), 434-448.

[4] A. Asokkumar, Derivations in hyperrings and prime hyperrings, Iran. J.
Math. Sci. Inform., 8 (2013), 1-13.

[5] M. Bakhshi and R. A. Borzooei, Ordered polygroups, Ratio Mathematica,
24 (2013), 31-40.

[6] T. Changphas and B. Davvaz, Properties of hyperideals in ordered semi-
hypergroups, Italian J. Pure Appl. Math., 33 (2014), 425-432.

[7] J. Chvalina, Commutative hypergroups in the sence of Marty and ordered
sets, General algebra and ordered sets (Horni Lipova, 1994), 19-30.

[8] J. Chvalina and J. Moucka, Hypergroups determined by orderings with
regular endomorphism monoids, Ital. J. Pure Appl. Math., 16 (2004),
227-242.

[9] I. Cristea and S. Jancic-Rašovic, Composition hyperrings, An. Stiint.
Univ. “Ovidius” Constanta Ser. Mat., 21(2) (2013), 81-94.

[10] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl.
Math., 35(3) (2004), 321-331.

[11] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered
semihypergroups and ordered semigroups by using pseuoorders, European
J. Combinatorics, 44 (2015), 208-217.

[12] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications,
International Academic Press, USA, 2007.

[13] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ.
Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2) (2011), 85-96.



Hyperideal theory in ordered Krasner hyperrings 210

[14] S. Hoskova, Quasi-order hypergroups determined by T -hypergroups, Ratio
Mathematica, 32 (2017), 37-44.

[15] S. Hoskova, Upper order hypergroups as a reflective subcategory of sub-
quasiorder hypergroups, Ital. J. Pure Appl. Math., 20 (2006), 215-222.

[16] N. Kehayopulu and M. Tsingelis, Pseudoorder in ordered semigroups,
Semigroup Forum, 50 (1995), 389-392.

[17] M. Krasner, A class of hyperrings and hyperfields, International J. Math.
and Math. Sci., 6 (1983), 307-312.

[18] S. Mirvakili and B. Davvaz, Applications of the α∗-relation to Krasner
hyperrings, J. Algebra, 362 (2012), 145-156.

[19] S. Mirvakili and B. Davvaz, Relations on Krasner (m,n)-hyperrings, Eu-
ropean J. Combin., 31 (2010), 790-802.

[20] J. Mittas, Hypergroups canoniques, Mathematica Balkanica, 2 (1972),
165-179.

[21] J. Mittas, Sur les hyperanneaux et les hypercorps, Math. Balkanica, 3
(1973), 368-382.

[22] T. Vougiouklis, The fundamental relation in hyperrings. The general hy-
perfield, Algebraic hyperstructures and applications (Xanthi, 1990), 203–
211, World Sci. Publ., Teaneck, NJ, 1991.

[23] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic
Press, Inc 115 Palm Harber, USA, 1994.

SABER OMIDI,
Department of Mathematics,
Yazd University,
Yazd, Iran.

BIJAN DAVVAZ,
Department of Mathematics,
Yazd University,
Yazd, Iran.
Email: davvaz@yazd.ac.ir, bdavvaz@yahoo.com


